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Abstract

Objectives: Acute lymphoblastic leukemia (ALL) is the most common malignancy in children and 
is usually associated with numerical and structural chromosomal changes. The correlations of specifi c 
cytogenetic fi ndings with presenting clinical features indicate the prognostic signifi cance of chromosomal 
abnormalities (CAs) in patients with ALL. 

Design and methods: The aim of this study was to describe the types and frequencies of CAs in the 
childhood and adult ALL patients. To date, his was the largest study to date in of children with ALL in 
Turkey, and presented the general cytogenetic characteristics of 260 patients diagnosed as having with 
ALL in a 17-year period. The cytogenetic analyses were performed in the diagnosis of ALL patients.

Results: The karyotype results were normal in 76,9% of 260 patients. However, CAs were detected 
in 23.1% of all patients. The male-female ratio was 1,5 and median age at diagnosis was 8.58 years in 
children. the incidence of abnormal karyotype was higher in males than that of females (the male-female 
ratio=2,62). The 18.1% of these CAs was structural aberrations, and also numerical aberrations were 5.0%. 
The Ph chromosome t(9;22) translocation was present in 1,2% of children. CAs in addition to Ph+ was 
observed in one case. Specifi cally, deletions are the most common karyotype (5,8%) among the patients, 
Duplications was present in 6 (2,3%) patients. İnversions were detected in two patients (0,8%). The ratio 
of fragilities and other CAs was 1,9% and 2,3% of all patients, respectively. Among numerical chromosome 
abnormalities, 7 patients (2,7%) had aneuploidies and poliploidies. One patient also had microchimeric 
cells.

Conclusion: This study showed that anomalies detected in ALL patients have shown correlations 
between specifi c abnormalities and clinical characteristics of the patients. This information could 
contribute to an understanding of the role of chromosomal changes in ALL malignancy, and confi rms the 
previously reported association between level of CAs and cancer risk.

Introduction

ALL is a malignant disorder of the bone marrow in which 
a lymphoid progenitor cell becomes genetically altered. 
It is the most common malignancy of childhood with an 
annual incidence rate of 3–4 cases per 100,000 children. The 
disease is most common in children but can occur at any age. 
Although, there are few identifi ed factors associated with an 
increased risk of developing ALL such as genetic, parental and 
environmental factors, the etiology of the disease remains 
largely unknown [1,2]. Prognostic impact of CAs in ALL 
patients is complex. The disease has a bimodal distribution: 
a sharp peak in incidence among children aged 2–5 years 
[3]. ALL results from somatic mutation in a single lymphoid 
progenitor cell at one of several discrete stages of development. 

The lymphoblasts have acquired genetic changesincluded both 
the number and structure of chromosomes. The translocations, 
inversions, deletions and duplications affect gene expression 
in ways that subvert normal programs of cell differentiation, 
proliferation, and survival, and these factors likely act in 
concert with each other in multistep pathways leading to 
leukemic transformation. Specifi c genetic abnormalities have 
been useful in diagnosis and defi ning prognostically important 
patient subgroups [4]. Several numerical and structural CAs are 
associated with childhood leukemia. The clonal origin of ALL 
has been established by cytogenetic analysis. Numerous genetic 
alterations have been and continue to be discovered in ALL, and 
it has been repeatedly shown that specifi c genetic abnormalities 
are present in the majority of successfully karyotyped patients 
with ALL [5-7]. Anoplidy is seen in 30-40% of all cases of 
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childhood ALL. Numeric chromosomal changes are usually 
encountered in chromosomes 4, 6, 8, 10, 14, 17, 18, 20 and 21 
[8-11]. Recurrent chromosome translocations play a critical 
role in the pathogenesis of ALL, and many translocations have 
important prognostic signifi cance. Moreover, the molecular 
characterization of breakpoints from such rearrangements has 
led to the identifi cation of oncogenes and to the design of novel 
therapeutic approaches. The most common structural change 
is the t(12;21) translocation, which accounts for 25% of cases 
of ALL [12]. 

This study was presented the cytogenetic characteristics of 
pediatric patients diagnosed as having ALL within a 17-year 
period.

Materials and Methods

The childhood and adult ALL patients -referred to our 
genetics laboratory from 1 May 1992 to 28 April 2009 were 
recruited. The diagnosis of ALL was made on the basis of a 
chromosomal analysis. In this study, karyotypes of patients 
referred with AAL were retrospectively analysed. ALL was 
initially, diagnosed by the referring clinical hematologist, 
based on the available clinical details. The cytogenetic 
analyses were performed in the Cytogenetics Laboratory, 
at the Department of Medical Biology and Genetics, Faculty 
of Medicine, Çukurova University. Metaphase chromosome 
preparations from peripheral blood were made according to 
the standard cytogenetic protocols. Fifty metaphases were 
analyzed in all the patients, but in cases of abnormalities and 
mosaicism the study was extended up to 100 metaphases. 
All CAs were reported according to the current international 
standard nomenclature (ISCN, 2009).

Results

Cytogenetics was performed in 260 patients diagnosed 
with ALL. The male-female ratio was 1,5 and median age at 
diagnosis was 8,58 years. The incidence of abnormal karyotype 
was higher in males (n=43, 72,4%) than that of females (n=17, 
27,6%). The male-female ratio with abnormal karyotype 
was 2,62. Out of 260 patients, 60 (23,1%) were found to have 
abnormal karyotype and rest of 200 (76,9%) were normal. 
The results of abnormal karyotype were divided into three 
categories: Philadelphia chromosome–positive (Ph+), CAs in 
addition to Ph+ and the others CAs wereshown in Table 1. 

The structural aberrations (translocations, deletions, 
inversions, duplications and fragilities) and numerical 
aberrations were 18,1% and 5,0%, respectively. The 
Ph chromosome t(9;22) translocation was present in 
approximately 1,2% of children. CAs in addition to Ph+ 
was observed in one case [46,XY,Ph+(90%),dup(1)
(q12;q23)]. Specifi cally, deletions are the most common 
karyotype (5,8% and 15 cases) among the patients, followed 
by 46,XY,del(1p-); 46,XY,del(4p13); 46,XX,del(6q16); 
46,XY,del(6q-); 46,XY,del(7q32); 46,XY,del(7q11)(50%); 
46,XY,del(8q24); 46,XY,del(11q11),t(9;11); 46,XY,del(11); 
46,XY,del(11q-); 46,XY,del(12p13); 46,XX,del(12q11); 
46,XY,del(12p13); 46,XY,del(14q22) and 46,XY,del(17p11). 
The ratio of translocations in all CAs was 3,9% (10 cases), 

Table 1: Characteristics of the patients and results of karyotypes.

Sex/Age Karyotypes
No. of 
cases

Frequency in all 
cases (%)

Normal 200 76.9

Abnormal 60 23.1

General Total 260

Abnormalities

F/54
M/29

Philadelphia chromosome positive 
(Ph+)

=

1
1

Chromosomal aberrations in addition 
to Ph+

M/2 46,XY, Ph+ (90%), dup(1)(q12;q23) 1

Total 3 1.2

Ph- , the others chromosomal 
aberrations

Structural chromosome abnormalities

Deletions

M/2
M/2
M/7
M/6
M/3
M/5
M/6
M/2
M/1

M/51
M/3
F/13
M/3
M/5
M/6

46,XY,del(1p22)
46,XY,del(4p13)x2

46,XX,del(6q16)
46,XY,del(6q-)

46,XY,del(7q32)
46,XY,del(7q11) (50%)

46,XY,del(8q24)
46,XY,del(11q11),t(9;11)

46,XY,del(11q)
46,XY,del(11q)

46,XY,del(12p13)
46,XX,del(12q11)

46,XY,del(12p13)x1
46,XY,del(14q22)x1

46,XY,del(17p11), fra(8%)

Total 15 5.8

Translocations

F/8
M/2
M/4
M/5
F/11
M/5
F/4
M/7
F/6
F/3

46,XX,t(1;2)(q12;q37)
46,XY,t(1;11)(q21;q23)
46,XY,t(2;6)(p25;p21.3)
46,XY,t(4;11)(q25;p13)

46,XX,t(4;11)
46,XY,t(4;11)

46,XX,t(4;9),del(11q-)
46,XY,t(8q;?)

46,XX,t(11;14)
46,XX,t(15;17)

Total 10 3.8

Duplications

M/2
M/4
M/6

M/10
M/7
F/2

46,XY,dup(1)(q12;q23)
46,XY,1q+

46,XY,1qh+
46,XX, 14q+

46,XY,4q+,CA (16%)
46,XY,Yqh+

Total 6 2.3

Inversions

M/1
F/4

46,XY,inv(2)x1, CA (10%)
46,XX,inv(9)(p11;q12)

Total 2 0.8

Fragilities
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followed by 46,XX,t(1;2)(q12;q37); 46,XY,t(1;11)(q21;q23); 
46,XY,t(2;6)(p25;p21.3); 46,XY,t(4;11)(q25;p13); 46,XX,t(4;11); 
46,XY,t(4;11); 46,XX,t(4;9),11q-; 46,XY,t(8q;?); 46,XX,t(11;14) 
and 46,XX,t(15;17). Duplications was present in 6 (2,3%) 
patients [46,XY,dup(1)(q12;q23); 46,XY,1q+; 46,XY,1qh+; 
46,XX,14q+; 46,XY,4q+ and 46,XY,Yqh+ ]. Inversions were 
detected in two patients (0.8%) [46,XY, inv(2); 46,XX,inv(9)
(p11;q12)]. The ratio of fragilities and other CAs were1,9% 
and 2,3% of all patients, respectively. Among numerical CAs, 
7 patients (2,7%) had aneuploidies and poliploidies. The 
other numerical changes were chromosomes +21 (n=3), +X 
(n=1) and –Y (n=1). One patient also had microchimeric cells 
[46,XY/46,XX (20%)].

Discussion

In present study diagnostically and prognostically important 
CAs were detected in 23,1% of patients by Cytogenetics. 
But, date from Turkey using this system which was applied 
to speci mens from 34 ALL patients showed that CAs were 
detected in 74% of the patients [14]. It was reported that he 
frequency and spectrum of CAs were not similar between the 
cur rent study and previous reports in patients with ALL [10,11]. 
The frequency of genetic abnormalities observed in our study 
was lower than that of previous reports [14-18]. The difference 

between the fi ndings of our study and previous reports was 
our some patients show different clinical presentations which, 
sometime, are mixing with clinical features of CML, AML and 
AAL.

In our study, deletions was found to be most frequent 
structural abnormalities (5,8%), and 15 chromosomal deletions. 
Losses of these regions were identifi ed at 1p22, 4p13, 6q16, 
6q-, 7q32, 7q11, 8q24, 11q11, 11q-, 12p13, 12q11, 14q22, 17p11, 
suggesting the presence of multiple tumor suppressor genes 
(Table 1). We were detected one del(1p22), two t(1;2)(q12;q37), 
t(1;11)(q21;q23), one dup(1)(q12; q23) and 1q+ in 5 patients. 
The numerical and structural aberrations of chromosome 1 
have been observed in chronic and acute leukemias and solid 
tumors as well. Previous reports on a CML-BC patient found 
the involvement of the long arm of chromosome 1 [19]. It was 
marked that consistent breaks and deletions involving specifi c 
oncogenes/tumor suppressor genes were present in 1p36 and 
other regions of chromosome 1, such as 1p22-q21 [20,21]. It 
is remarkable to have found the ABL2 gene in 1q25, which is 
a proto-oncogene whose protein is a non-receptor tyrosine 
kinase, and the TPR gene in the same region; its extreme 5′ end 
fuses with several different kinase genes in some neoplasias 
and could be involved in leukemogenesis mechanisms [22]. 
Gene deletions and translocations are responsible for initiating 
of cancer progression. The loss or inactivation of one or more 
tumor suppressor genes are associated with many types 
of cancer, as chromosomal regions associated with tumor 
suppressors are commonly deleted or mutated. 

Aberrations involving chromosome 6q are common 
in childhood ALL occurring in 7-18% of patients [23,24]. 
Frequently, the breakpoints are 6q15, 6q21-23 regions and 
interstitial deletion are also common in both B lineage and T 
lineage. Overall the breakpoints occur predominantly in 6q21 
[25]. The deleted region is mostly large, involving a number 
of genes and genes affected by the deletion are presumably 
essential for normal cellular homeostasis. FOXO3A, a 
transcription factor involved in the control of proliferation and 
apoptosis, is one of the candidate genes located in the deleted 
6q21 region. In the present study, 3 patients also had del(6q) 
and t(2;6)(p25;p21.3), and this break point was in the region 
of 6p21.3. Sinclair et al. [26] also suggested that the incidence 
of balanced rearrangements involving 6q in ALL may be much 
higher than previously thought. These fi ndings show that the 
(6q) abnormality is a good prognostic indicator. In present 
study, we also found del(7q) in two patients, and there was 
a correlation between an isolated deletions of the long arm of 
chromosome 7 (q31, q32 and q-) and patients with ALL. The 
partial deletions of 7q might represent a secondary event in 
the context of preexisting genomic instability. Complete loss 
of chromosome 7 or partial deletion involving its long arm are 
highly recurrent CAs in myeloid disorders [27,28]. Also, we 
found deletion at bands 8q24 in a patient. These results were 
consistent with the hypothesis that the 8q24 region affected 
the susceptibility of cancer. 

Recurrent balanced translocations are observed in specifi c 
types of leukaemia and lymphomas, and are known to drive 
tumorigenicity [29,30]. About 50% of hematopoietic neoplasms 

M/3
F/15
F/6
M/6
M/1

46,XY,fra (32%),CA (22%)
46,XX,fra (25%)
46,XX,fra(20%)

46,XY,del(17p11-ter), fra (8%)
46,XY,fra(3p21)

Total 5 1.9

The others chromosome abnormalities

M/4
M/2
F/9
F/6
M/8
M/6

46,XY, CA (20%)
46,XY, CA (15%)
46,XX, CA (10%)
46,XY, CA (15%)
46,XY, CA (15%)

46,XY/46,XX (20%) microchimerism

Total 6 2.3

General total 47 18.1

Numerical chromosome abnormalities

F/3
M/4
F/7
M/5

M/13
M/10

47,XX,+21
47,XY,+21
47,XX,+21

47,XY,+21, t(15;17)(p12;q23)
47,XXY

46,XY/45,X (23%)

Total 6 2.3

Aneuploidies and poliploidies

M/48
M/35
M/9
M/4
M/6
F/8
F/7

46,XY,anoploidy
46,XY, poliploidy
46,XY, anoploidy
46,XY, anoploidy
46,XY,anoploidy
46,XX, anoploidy

46,XX,anoploidy (12%)

Total 7 2.7

General total 13 5.0
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somatically acquire translocations, which activate proto-
oncogenes in most cases. The major translocations in ALL 
affect proteins that have critical functions in cell proliferation, 
differentiation, or survival [31]. The translocations in all 
metaphases were found in 10 patients with ALL (3,8%). These 
translocations was found in specifi c regions of chromosomes 
1q12, 1q21, 2q37, 2p25, 4q25, t(4;11)x[2], t(4;9), 6p21.3, 
t(8q;?), 11p13, 11q23, 11q, t(11;14) and t(15;17) (Table 1). First, 
rearrangements affecting the same chromosomal region may 
involve different genes and represent clinically and biologically 
diverse entities. For example, the t(11q23) translocation is a poor 
prognostic factor, accounting for 2-4% of childhood ALL, and it 
is expressed in 80% of all infants with ALL [32]. In the present 
study, chromosomes 11 translocation was found to be most 
frequently involved in structural abnormalities (in six cases). 
In particular, translocations between 11 and 4 chromosomes 
in three patients are noteworthy. Similarly, in other Turkish 
study, the t(11q23) translocation was found in one patient of 
thirty four patients with childhood ALL [14]. The chromosomal 
translocation t(4;11)(q21;q23) is associated with high-risk ALL 
of infants. These fi ndings show that 11 chromosomes are very 
important in the prognosis of ALL. Because, chromosomal 
translocations that activate specifi c genes are a defi ning 
characteristic of human leukaemias and of acute lymphoblastic 
leukaemia in particular. Translocation t(4;11)(q21;q23)/
KMT2A-AFF1 was the most frequent rearrangement found. In 
a recent study, fi ve most common fusion genes i.e. BCR-ABL (t 
9;22), TCF3-PBX1 (t 1;19), ETV6-RUNX1 (t 12;21), MLL-AF4 (t 
4;11) and SIL-TAL1 (del 1p32) were found in 79% of the patients, 
and MLL-AF4 t(4;11) positivity characterized a subset of adult 
ALL patients with aggressive clinical behaviour and a poor 
outcome [33]. This study also supports our fi ndings. 12p13 and 
12q11 deletions were detected in two patients. The prognostic 
importance of simultaneously occurring 12p13 deletions is 
currently unknown. Thus, we suggested that more information 
should be obtained from patients with different variants of 
deletions. The role of the 12p-q deletions in prognosis, incidence 
of relapse and follow-up should also be evaluated. In addition, 
we observed rare structural chromosomal rearrangements on 
17 chromosome [del(17p11), t(15;17)]. The p53 mutation occurs 
rarely in ALL. Kim et al., [34], have also shown a case with acute 
promyelocytic leukemia of t(15;17)(q22;q21) rearrangement 
associ¬ated with other abnormalities. Our results, in addition 
to other previously reported fi ndings, suggested that losses 
and structural rearrangements of chromosome 17 could play a 
role in the pathogenesis of ALL. These deletions might have an 
overall unfavorable prognosis in our patients. 

In the present study, the Ph chromosome t(9;22) 
translocation was present in approximately 1,2% of children. 
CAs in addition to Ph+ was observed in one case [Ph+(90%), 
dup(1)(q12;q23)]. Ph chromosome was the most frequent 
recurrent abnormality (29%). Its incidence increased with age, 
as already reported [35], but peaked in the 40- to 50-year-
old age range. Thus, two of our three Ph-positive patients 
were older (29 and 54 years). Gene duplications and increases 
in gene copy numbers can also contribute to cancer. We 
describe six patients (2,3%) of a rare type of duplications, such 
as dup(1)(q21;q23), 1q+, 1qh+, 14q+, 4q+ and Yqh+ (Table 1). 

These chromosomal gains may be relevant to the pathogenesis 
of ALL transformation in some cases. Balanced rearrangements 
are infrequent and can occur as a single additional abnormality 
or as a part of complex cytogenetic changes. In our study, The 
inversions were evaluated in 2 patients (0,8%) such as inv(9)
(p11;q12) and inv(2) (Table 1). Some genes on chromosomes 2 
that are known to play a role for tumor development. Therefore, 
2p-q could play a role in the pathogenesis of ALL. However, 
there have been very few reports on the inv(9) variation as an 
acquired CAs in hematologic malignancies [36]. It has reported 
pericentric inversion in chromosome 9 at a frequency of 0,8-2% 
in normal population and at a similar frequency in ALL patients. 
This inversion is usually considered as a polymorphism, and its 
clinical consequences remain unclear [37]. 

Autosomal recessive genetic diseases associated with 
increased chromosomal fragilitie (FSs) and a predisposition 
to ALL include ataxia-telangiectasia, Nijmegen breakage 
syndrome, and Bloom syndrome [38]. FSs are known to be 
associated with genes that relate to tumorigenesis. They have 
been found the FSs in 8-32% of our patients-cells (1,9%) 
(Table 1), and ALL children have the others CAs in 10-20% of 
cells (2,3%). These CAs may affect the susceptibility to tumors. 
These aberrations are also the most common ones in ALL cases 
with variant translocations and additional abnormalities. The 
most interesting fi nding in this study was the involvement 
of microchimeric cells [46,XY/46,XX(20%)] was seen in one 
patient (Table 1). Microchimerism is the existence of small 
amounts of DNA in the body coming from a geneticly different 
person. It recently found male microchimerism presence to 
be associated with a 70% reduced odds of developing breast 
cancer, and a 4-fold increased odds of developing colon 
cancer [39]. In one other study, FMc were identifi ed in 50% of 
papillary thyroid tumors [40]. Unfortunately, we were not able 
to determine the nature of these cells. This suggests to us that 
the can microchimerism take place in the etiology of cancer? 

Numerous genetic alterations have been and continue to 
be discovered in ALL, and it has been repeatedly shown that 
specifi c genetic abnormalities are present in the majority 
of successfully karyotyped patients with ALL [3,41]. In the 
present study, 5% of the patients revealed numerical CAs 
(Table 1). The rate of chromosomal gains and losses can lead 
to aneuploidy was termed chromosomal instability. Aneuploidy 
is also features of cancers that are usually associated with 
poor prognosis. Aneuploidy is a remarkably common feature 
of human cancer, present in ~90% of solid human tumours 
and >50% of haematopoietic cancers [42]. The common 
aneuploidy observed in our patients (2,3%), occurring in 10-
15% of metaphases (Table 1). Several studies have shown 
that aneusomies of different chromosomes were associated 
with aggressive tumor behavior [11,12]. For example, gain of 
chromosome 8 is found in ~10–20% of cases of acute myeloid 
leukaemia [43,44]. Autosomal monosomies are observed to 
be the most frequent in our patients, and the most frequently 
observed numerical changes involve the chromosomes +8, 
-7, -17, -21, +21, -22 and -Y. Trisomy of chromosome 8 is 
frequently reported in myeloid lineage disorders and also 
detected in lymphoid neoplasms as well as solid tumors 
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suggesting its role in neoplastic progression in general. These 
chromosomes may affect the susceptibility to tumors. 

One of the main results in our patients, the 1,7% of them 
revealed the trisomy 21 chromosome (Down syndrome=DS), 
and one patient has one translocation of 15p12 and 17q23 in 
addition to the presence of trisomy 21 chromosome. Just 
as, children with DS have a 10- to 30-fold increased risk of 
leukemia. DS cases are more likely to have B-cell precursor 
ALL, and their leukemic cells lack adverse genetic abnormalities 
[45]. Leukemia cells with either i(21q10) or trisomy 21 have the 
potential for basophil formation [46]. It has reported a transient 
leukemic condition in a phenotypically normal newborn bearing 
i(21q10) clones, suggesting that the q arm of chromosome 21 
contains suffi cient genetic information for the development of 
transient leukemia [47]. Consistent with the literature, in our 
study hyperdiploidy was detected in 26% of ALL patients, with 
the most common copy gains seen in chromosomes 4, 6, 10, 21 
and X. Previous studies have suggested that gaining a copy of 
chromosomes 4, 10 or 17 is associated with favorable prognosis; 
however, trisomy of chromosome 5 confers poorer outcome 
among highhyperdiploid patients [48,49]. In the present study, 
we observed the complete or partial loss of chromosome 7 in 
several metaphases (Table 1). Monosomy 7 was also observed in 
several clones analyzed. An association between the complete 
or partial loss of chromosome 7 and ALL has been recognized 
from the early days of tumor cytogenetic analysis. Detection 
of such abnormalities usually heralds a poor prognosis [50]. 
Amare [51], reported monosomy of chromosomes 7 and 17 as 
secondary CAs that occur when disease progresses from CML 
to a more aggressive blastic phase or transforms into lymphoid 
leukemialike acute myeloid, lymphoid leukemia, or lymphoid 
blast crisis of CML. Sabine [52], have shown that monosomy 
7/del(7q) causes loss an important tumor suppressor, and 
upregulation of oncogene in AML. 

We detected two patients with 47,XXY (Klinefelter’s 
syndrome) and 46,XY/45,X -Y (23%) (Table 1). Sex chromosome 
aneuploidies may be affect susceptibility to the tumors. The 
47,XXY karyotype in hematological disorders has not been 
clearly established yet. Gain of an X chromosome is relatively 
common in leukemias, lymphomas and prostate cancer, and 
generally occurs in association with other karyotypic changes 
[53,54]. Risk of acquiring breast carcinoma in 47,XXY is 
relatively increased, with relative risk exceeding 200 times. It 
is generally not known whether this gain involves the active 
or the inactive X chromosome. Although, there are numerous 
X-linked genes that may be involved in neoplasia, including the 
MAGE tumor-specifi c antigen loci [55], the pseudoautosomal 
GM-CSFR gene that likely escapes X chromosome inactivation 
[56], and the ARAF1 [57], ELK1 [58], and MCF2 [59], oncogenes. 
With regard to Y chromosome, deletions have been shown to 
be involved in prostate cancer [60,61], male breast carcinomas 
[62,63], and pancreatic adenocarcinomas [64]. Loss of Y 
chromosomes is a common secondary change in cancer cells 
and in a few leukemias [65]. Possible signifi cance of loss 
of Y chromosome in neoplasia have been postulated as; Y 
chromosome harbors a tumor suppresser gene, which when lost 
or modifi ed, gene(s) presumably located on the X chromosome 

may be affected leading to abnormal proliferation. Polyploidy 
and endoreduplication of chromosomes occur more often in 
patients with disseminated cancer and vary with the extent of 
disease. 

Conclusion

The patients showed a high frequency of loss and gains of 
chromosome increased incidence of deletions, translocations, 
duplications, inversions, chromatid breaks and aneuploidies, 
along with other chromosomal alterations, could contribute to 
the progression of the disease. This study could detect a wide 
variety of common, rare and novel chromosomal abnormalities 
in patients with hematological disorders, providing valuable 
diagnostic and prognostic information. In addition, 
aneuploidies of X can play a role in the pathogenesis of ALL. 
Further understanding of the CAs may help in anticipating its 
implications in hematological cancers.
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